skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Collini, Renee"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As coastal regions face escalating risks from flooding in a changing climate, Nature-based Solutions (NbS) have garnered attention as promising adaptation measures to mitigate the destructive impacts of coastal flooding. However, the challenge of compound flooding, which involves the combined effects of multiple flood drivers, demands a deeper understanding of the efficacy of NbS against this complex phenomenon. This manuscript reviews the literature on process-based modeling of NbS for mitigating compound coastal flooding and identifies knowledge gaps to enhance future research efforts. We used an automated search strategy within the SCOPUS database, followed by a screening process that ultimately resulted in 141 publications assessing the functionality of NbS against coastal flooding. Our review identified a dearth of research (9 %) investigating the performance of NbS against compound flooding scenarios. We examined the challenges and complexities involved in modeling such scenarios, including hydrologic, hydrodynamic, and ecological feedback processes by exploring the studies that used a process-based modeling framework. Key research gaps were identified, such as navigating the complex environment, managing computational costs, and addressing the shortages of experts and data. We outlined potential modeling pathways to improve NbS characterization in the compound flooding framework. Additionally, uncertainties associated with numerical modeling and steps to bridge the research-to-operation gaps were briefly discussed, highlighting the bottlenecks in operational implementation. 
    more » « less
  2. Sea Grant programs across the United States and its territories are working with coastal communities to enhance their resilience to hazards and weather extremes exacerbated by climate change. Drawing on the expertise of the authors, many of whom have multiple years or decades of experience in the Sea Grant network, the article identifies five key strategies that Sea Grant programs employ to support the process of coastal hazards and extreme weather adaptation and resilience-building. The application of these strategies, most of which have their roots in the historical legacy of extension, are then illustrated through summaries of current Sea Grant activities and projects, showcasing how they have been applied in real-world situations. These strategies allow Sea Grant programs to fill a unique and valuable niche in national efforts to enhance coastal resilience. The article concludes with a discussion of emerging challenges and recommendations for strengthening Sea Grant’s capacity to support adaptation in coastal communities into the future. 
    more » « less